
Date to be set via "View/Header and Footer"

Workshop #1: Presentation of Heat
Patrick Petit
July 2012

Slide 2/27

Agenda of presentation

Heat Overview

Heat Roadmap

Heat basic architecture

Heat CLIs

Bootstrap methods

CloudFormation helper scripts

CloudFormation template

Synchronization & rollback

IAM resources

Advanced Services

Slide 3/27

Heat Overview

Heat provides an AWS CloudFormation implementation for OpenStack (API and template) that
orchestrates multiple composite cloud applications, called a stack, by executing a CloudFormation
template

All of the resources, installation, configuration, and startup commands are included in the CloudFormation
template

Allows creation of most resource types (such as instances, floating IPs, volumes, security groups, users,
etc.) as well as some advanced services (such as high availability, auto-scaling and nested stacks)

Heat orchestration is a whole or nothing asynchronous service that supports updating running stacks (not
implemented yet)

Compatible with AWS CloudFormation legacy (heat CLI based on boto and compatible API)

Integrates well with Puppet and Chef

OpenStack style project

● Tight integration with other OpenStack projects (Eg. Glance, Keystone, Nova)

● Python 2, matching OpenStack design principals

● Open-source (ASL V2) since inception in March 2012 hosted on Github

● Integrated with Stackforce (OpenStack workflow gerrit/jenkins)

Very active community of 9 developers from Red Hat

Slide 4/27

Heat Roadmap

Targeted at Folsom:

● Complete integration with Common,
Glance, Keystone, Swift, and Nova

● Complete implementation of the AWS
CloudFormation API

● Usable implementation of AWS
CloudWatch API

● Complete implementation for all non-VPC
related resource types in CloudFormation

● Instance and application high availability

● Autoscaling

● Nested Stacks

Targeted at G release:

● Project Incubation

● Optimizing project governance to match
OpenStack standards

● Complete implementation of AWS
CloudWatch API, contributing appropriate
technology into Ceilometer

● Complete integration with Quantum,
providing complete VPC feature coverage

Targeted at H release:

● Hardening of source tree

● Improving source tree to meet OpenStack
design principles

● Promotion to OpenStack core

Slide 5/27

Heat basic architecture

Stack

Heat
API

Heat
API

AMQPAMQP

Heat
Engine

Heat
Engine

OS DBOS DB
Heat

Metadata

Heat
Metadata

VM VM VM VM

RPC

OpenStackOpenStack

Heat-api: is a service that exposes a
CloudFormation REST API to the
heat-engine. Communications
between the heat-api and heat-engine
uses RPC (requests and events)

Heat-metadata: REST API server to
access and manipulate metadata of
the stacks. Also allows instances to
send usage statistics (similar to the
CloudWatch functionality)

Heat-engine: is the heat project
server. Heat engine does all the
orchestration work and is the layer in
which the resource integration is
implemented

Slide 6/27

Heat command line
heat <command> [options] [args]

Commands:

 create Create the stack
 delete Delete the stack
 describe Describe the stack
 update Update the stack
 list List the user's stacks
 gettemplate Get the template
 estimate-template-cost Returns the estimated monthly cost of a template
 validate Validate a template
 event-list List events for a stack
 resource Describe the resource
 resource-list Show list of resources belonging to a stack
 resource-list-details Detailed view of resources belonging to a stack

Example:

heat -d create wordpress --template-file=WordPress_Single_Instance_With_HA.template \
--parameters="InstanceType=m1.xlarge;DBUsername=foo;DBPassword=bar;KeyName=mykey"

Slide 7/27

Heat-jeos command line
heat-jeos <command> [options] [args]

Commands:

 create Create a JEOS image and register it with OpenStack
 tdl Prepare a template ready for Oz
 image Build an image from the specified template
 register Register the built image with OpenStack Glance

Here are some examples:

heat-jeos create F16-x86_64-cfntools-jeos

Create a Fedora 16 image from the bundled template.

heat-jeos create --template-file ~/templates/my.tdl

Create an image from a custom template.

heat-jeos create --gold --template-file ~/templates/my.tdl --iso /var/isos/my.iso

Create a golden image from a custom template and iso file

Slide 8/27

Oz disk image template
<template>
 <name>F16-x86_64-cfntools-jeos</name>
 <os>
 <name>Fedora</name>
 <version>16</version>
 <arch>x86_64</arch>
 <install type='iso'>
 <iso>file:/var/lib/libvirt/images/Fedora-16-x86_64-DVD.iso</iso>
 </install>
 </os>
 <description>Fedora 16</description>
 <commands>
 <command name='commands'>
yum -y update --skip-broken;yum -y install yum-plugin-fastestmirror;yum -y update;/usr/sbin/useradd ec2-user;echo -e 'ec2-
user\tALL=(ALL)\tNOPASSWD: ALL' >> /etc/sudoers;yum -y install cloud-init;cat >> /etc/rc.d/rc.local << EOF;chmod +x
/etc/rc.d/rc.local;chmod +x /opt/aws/bin/cfn-*
#!/bin/bash
setenforce 0
EOF
 </command>
 </commands>
 <files>
 <file name='/opt/aws/bin/cfn-init' type='base64'></file>
 <file name='/opt/aws/bin/cfn-hup' type='base64'></file>
 <file name='/opt/aws/bin/cfn-signal' type='base64'></file>
 <file name='/opt/aws/bin/cfn_helper.py' type='base64'></file>
 <file name='/opt/aws/bin/cfn-get-metadata' type='base64'></file>
 </files>
</template>

Slide 9/27

Several bootstrap methods are possible
Create image with application ready to go (golden image)

Use CloudFormation and cloud-init to run a startup script passed as user-
data to the nova boot command

Use CloudFormation metadata and helper scripts (based on cloud-init)
that allow to update your metadata after your instance and applications
are up and running

All the above complemented with Chef or Puppet clients

Slide 10/27

CloudFormation helper scripts

These scripts are installed by default in images created with heat-jeos. These
scripts are not executed by default...

● cfn-init: used to execute the resource's metadata (install packages, create
files and start services

● cfn-signal: a wrapper script to signal a WaitCondition resource allowing to
wait for an application to be ready before continuing with the stack creation

● cfn-hup: a daemon to handle updates to metadata and execute custom
hooks when changes are detected

● cfn-get-metadata: a wrapper script making it easy to retrieve either all
metadata defined for a resource or a specific key or subtree of the
resource's metadata

● cfn-update-stack: a wrapper script to update metadata content

Slide 11/27

Anatomy of a CloudFormation Template

The template consists of five top-level JSON objects:
● Description: Text description of the template

● Parameters: Input parameters to the template to specify runtime
parameters like key-pair, instance type, database name, etc.

● Mappings: Like a hash table. Used for example to map the proper
architecture to the instance type so that the template user need
specify only the instance type (Eg. "c1.xlarge" : { "Arch" : "64" })

● Resources: The only required JSON objects in the template. Used to
describe resources such as instance, volume, security group, floating
IP, ... Resources have metadata, properties and user-data sections

● Outputs: Used to return application's runtime information like the
public URL for a newly created website

Slide 12/27

Resource Metadata

The cfn-init script uses the resource's metadata block rooted by the
AWS:CloudFormation::Init metadata key

"Resources": {
 "MyInstance" : {

"Type": "AWS::EC2::Instance",
"Metadata" : {

"Param" : {"Ref":"ParamName"},
"AWS::CloudFormation::Init": {

"config" : {
"sources" : {

 :
},
"files" : {

 :
},
"packages" : {

 :
},
"services" : {

 :
}

}
 }
 }
 }
 }

Sources allows to download an archive file and unpack it in a
target directory (tar, tar+gzip, tar+bz2 and zip)

Packages allows to download and install packages (apt, yum,
rubygems, rpm and python)

Files allows to create arbitrary files. The content can be either
inline or pulled from a URI.

Services allows to define which services should be enabled or
disabled when the instance is launched. It also allows to specify
dependencies on sources, packages and files so that if a restart
is needed due to files being installed, cfn-init will take care of
restarting the service.

Slide 13/27

Interpreting the resource metadata

The cfn-init bootstrap script interprets the resource's metadata block
containing the sources, packages, files and services keys when the
instance is launched

Shall use the access key of an account with permission to call
DescribeStackResource (not currently supported)

cfn-init has the following syntax:
cfn-init --access-key access.key \

--secret-key secret.key \
--credential-file | -f credential.file \
–-resource | -r logical.resource.id \
--region region

#!/bin/bash
/opt/aws/bin/cfn-init -s <stackname> -r <resourcename>
--region <region> --access-key <accesskey> --secret-key
<secretkey>

Slide 14/27

Template example #1

Check WordPress_Single_Instance_With_EBS_EIP.template

https://github.com/heat-api/heat/blob/master/templates/WordPress_Single_Instance_With_EBS_EIP.template

Slide 15/27

Stack synchronization and rollback

Heat supports a WaitCondition resource that is used to synchronize resource
creation and to make sure that either all of your stack's resources are created or
none of them are

The WaitCondition resource pauses execution of the template until a specified
condition is met or a timeout period is exceeded

To wait for the application to be ready, you can use the cfn-signal script to
signal the application installed successfully or failed

cfn-signal has the following syntax

cfn-signal --success | -s signal.to.send \
--reason | -r resource.status.reason \
--data | -d data \
–-id | -i unique.id \
--exit-code | -e exitcode \
waitcontionhandle.url

Slide 16/27

Template example #2

For a simple WaitCondition example check
MySQL_Single_Instance.template

https://github.com/heat-api/heat/blob/master/templates/MySQL_Single_Instance.template

Slide 17/27

IAM resources

Heat integrates with Keystone to create users and keys from within the template

But currently policies are not supported because there is no nice correlation
between keystone's roles and policy statements

AWS::IAM::User resource type
● Used to create a keystone user

● Useful to create an ephemeral user for the lifetime of the stack

AWS::IAM::AccessKey resource type
● Creates an AccessKey an assign it to the IAM user

● You can get the SecretKey from the AccessKey using the Fn::GetAtt function and
display the result in the output declarations of the template like in:

"AccessKeyformyaccesskey" : { "Value" : {"Ref" : "myaccesskey"} },
"SecretKeyformyaccesskey" : { "Value" : {"Fn::GetAtt" : ["myaccesskey",
"SecretAccessKey"]} }

http://docs.amazonwebservices.com/AWSCloudFormation/latest/UserGuide/aws-properties-iam-user.html
http://docs.amazonwebservices.com/AWSCloudFormation/latest/UserGuide/aws-properties-iam-accesskey.html

Slide 18/27

Example: use of user credentials in an instance
"myuser" : {
 "Type" : "AWS::IAM::User",
 "Properties" : {
 "LoginProfile" : {
 "Password" : "verybadpasswd",
 },
},

"myaccesskey" : {
 "Type" : "AWS::IAM::AccessKey",
 "Properties" : {
 "UserName" : {"Ref": "foo"}
 }
},

"myinstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {

 "UserData" : {"Fn::Base64" : {"Fn::Join" : ["", [
 "ACCESS_KEY=", { "Ref" : "myaccesskey" }, "&",
 "SECRET_KEY=", {"Fn::GetAtt" : ["myaccesskey", "SecretAccessKey"]}]

Slide 19/27

Intrinsic functions

Heat supports most AWS intrinsic function that help manage your stack
● Fn::Base64: returns the Base64 representation of the input a string

● Fn::FindInMap: returns the value of a key from a mapping declared in the
Mappings section

● Fn::Join: appends a set of values into a single value, separated by the
specified delimiter.

● Ref: returns the value of the specified parameter or resource logical name.
The value is generally the name of the resource but can be a more
meaningful identifier (Eg. instance ID, or parameter value like in “Ref” :
“DBName”)

● Fn::GetAtt: returns the value of an attribute from a resource in the template.
Eg. "Fn::GetAtt" : ["MyInstance" , "PublicIP"]. Resources may have no or
multiple attributes.

Slide 20/27

But Heat is much more than a resource brokering
service

Heat targets also advanced cloud services
integration in the stack template

Slide 21/27

Ongoing Support of AWS AutoScaling

AWS::AutoScaling::AutoScalingGroup resource type
● Creates an auto-scaling group.

● Useful to launch a bunch of compute nodes at once, so you can do
this:

AWS::AutoScaling::LaunchConfiguration resource type
● Example of tight integration with OpenStack's specific capabilities like

NovaSchedulerHints resource property to send arbitrary key/value pairs to
the scheduler.

AWS::AutoScaling::ScalingPolicy resource type
● adds a scaling policy to an auto scaling group

heat create hpc-cluster -f ./templates/hpc-cluster.template
--parameters="NumInstances=50"

http://docs.amazonwebservices.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-group.html
http://docs.amazonwebservices.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-launchconfig.html
http://docs.amazonwebservices.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-policy.html

Slide 22/27

Template examples #3

Check this simple template that uses AutoScalingGroup to create a
cluster of compute nodes BasicAutoScaling.template

https://github.com/heat-api/heat/blob/master/templates/ppetit.template

Slide 23/27

Ongoing Implementation of CloudWatch

AWS::CloudWatch::Alarm resource type
● Creates a CloudWatch alarm

● Useful to support instance and application high availability

● Currently the only CloudWatch action that is supported is
HEAT::HA::Restarter

● Uses metadata server to communicate application stats

HEAT::HA::Restarter resource type
● Restart an instance

Slide 24/27

Template examples #4

Check the WordPress_Single_Instance_With_HA.template

https://github.com/heat-api/heat/blob/master/templates/WordPress_Single_Instance_With_HA.template

Slide 25/27

References

http://wiki.openstack.org/Heat

https://github.com/heat-api

https://github.com/heat-api/heat/tree/master/templates

http://docs.amazonwebservices.com/AWSCloudFormation/latest/A
PIReference/API_CreateStack.html

http://docs.amazonwebservices.com/AWSCloudFormation/latest/U
serGuide/create-stack.html

http://docs.amazonwebservices.com/AWSCloudFormation/latest/U
serGuide/aws-template-resource-type-ref.html

http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=tosca

https://github.com/heat-api

Slide 26/27

Table sample

Col 1 Col 2 Col 3 Col 4 Col 5

Table text

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

